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ABSTRACT

A parametric statistical postprocessing method is presented that transforms raw (and frequently biased)

ensemble forecasts from the Global Ensemble Forecast System (GEFS) into reliable predictive probability

distributions for precipitation accumulations. Exploratory analysis based on 12 years of reforecast data and
1/88 climatology-calibrated precipitation analyses shows that censored, shifted gamma distributions can well

approximate the conditional distribution of observed precipitation accumulations given the ensemble fore-

casts. A nonhomogeneous regression model is set up to link the parameters of this distribution to ensemble

statistics that summarize the mean and spread of predicted precipitation amounts within a certain neigh-

borhood of the location of interest, and in addition the predicted mean of precipitable water. The proposed

method is demonstrated with precipitation reforecasts over the conterminous United States using common

metrics such as Brier skill scores and reliability diagrams. It yields probabilistic forecasts that are reliable,

highly skillful, and sharper than the previously demonstrated analog procedure. In situations with limited

predictability, increasing the size of the neighborhood within which ensemble forecasts are considered as

predictors can further improve forecast skill. It is found, however, that even a parametric postprocessing

approach crucially relies on the availability of a sufficiently large training dataset.

1. Introduction

Ensemble predictions are now routinely generated

at operational weather prediction centers worldwide

(Molteni et al. 1996; Toth and Kalnay 1993, 1997;

Houtekamer and Derome 1995; Charron et al. 2010).

Despite many improvements to them over the last two

decades, precipitation forecasts from the ensembles

are still typically unreliable, be it from insufficient

model resolution, less-than-optimal initial conditions,

suboptimal treatment of model uncertainty, and/or

sampling error. For this reason, statistical post-

processing of the output of an ensemble prediction

system is commonly an integral part of the forecast

process, since it can improve the reliability and

skill of probabilistic guidance (e.g., Wilks and Hamill

2007; Hamill et al. 2008, and references therein).

By comparing past forecasts with their verifying

observations, systematic biases and inadequate rep-

resentation of forecast uncertainty can be identi-

fied, and the current forecast can be adjusted such

as to minimize these systematic errors. When the

forecasts are provided on a grid that is too coarse

to resolve small-scale effects that affect the weather

variable under consideration, many postprocessing

methods also implicitly perform a statistical

downscaling.

The statistical postprocessing of precipitation accu-

mulations is far more challenging than the post-

processing of weather variables like surface temperature

or wind speed for several reasons:
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1) Their mixed discrete/continuous nature (positive

probability of being exactly zero, continuous value

range for positive precipitation amounts) makes it

difficult to find an adequate parametric distribution

model.

2) Forecast uncertainty typically increases with the

magnitude of expected precipitation amounts; this

must be taken into account when setting up a model

for the conditional distribution of observed precipi-

tation amounts given the ensemble forecasts.

3) High precipitation amounts occur very infrequently;

a customized treatment of these cases may, there-

fore, require a vast amount of training data.

The advantages and disadvantages of the different

postprocessing approaches proposed in the literature

are typically related to those three challenges. Non-

parametric approaches like the analog method (Hamill

andWhitaker 2006; Hamill et al. 2015) completely avoid

the first two issues, but may be disproportionately af-

fected by the third one since their treatment of high

precipitation amounts neglects the information with

training samples with lower precipitation amounts.

Parametric methods, on the other hand, can extrapolate

the relations found between observations and forecasts

of low and moderate magnitudes to higher magnitudes.

In doing so, they may reduce the demand for training

data, but the quality of the corresponding predictions

strongly depends on the adequacy of the parametric

assumptions that have to be made. Examples of para-

metric approaches that have been developed for quan-

titative precipitation forecasts include Bayesian model

averaging (BMA; Sloughter et al. 2007), extended lo-

gistic regression (ExLR; Wilks 2009; Ben Bouallègue
2013; Messner and Mayr 2014), and ensemble model

output statistics (EMOS; Scheuerer 2014). All of them

make somewhat ad hoc assumptions about the parametric

form of the predictive distributions: Sloughter’s BMA

method models precipitation occurrence/nonoccurrence

separately and assumes gamma distributions for positive

precipitation amounts; ExLR implies the assumption of

censored logistic distributions; Scheuerer’s EMOSmethod

assumes censored generalized extreme value distribu-

tions (GEVs). To dealwith the issue of heteroscedasticity

mentioned above, BMA and ExLR commonly apply

power transformations to both forecasts and observa-

tions, with powers chosen such as to make the forecast

error terms more homoscedastic. Scheuerer’s EMOS

method utilizes two different ensemble statistics that

serve as predictors for the scale parameter of the cen-

sored GEV distributions.

In this paper we will leverage NOAA’s second-

generation GEFS reforecast dataset (Hamill et al.

2013) to systematically develop a parametric model for

the conditional distribution of observed precipitation

amounts given the ensemble forecasts. This will even-

tually lead to an approach similar to the one proposed by

Scheuerer (2014), but based on censored, shifted gamma

distributions (CSGD), and a more sophisticated heter-

oscedastic regression model that accounts for some

further peculiarities of precipitation. In section 2 we

briefly describe the forecast and observation data used

in this study, and we introduce our CSGD model in

section 3. Section 4 describes the actual postprocessing

approach, which proceeds in three steps: first, the en-

semble forecasts are adjusted such as to match the ob-

servation climatology, and are condensed into four

ensemble statistics. Second, a CSGD model for the un-

conditional (climatological) distribution of the obser-

vations is fitted. Third, a nonhomogeneous regression

model is set up that links the ensemble statistics to the

CSGD parameters, and results in a conditional distri-

bution model for the observations given the ensemble

forecasts. This model is relatively complex, but a com-

parison with nonparametrically estimated conditional

distributions of observed precipitation amounts shows

that a certain degree of flexibility (and thus complexity)

is necessary to address the peculiarities of precipitation.

The benefit of developing a sophisticated parametric

approach will become clear in section 5, where proba-

bilistic forecasts generated by our method are verified

and compared against those obtained with a state-of-

the-art analog approach. The latter is nonparametric,

thus even more flexible than the CSGD approach, and

easier to implement. In situations where training data

are sparse (e.g., rare events), however, the predictive

performance of the CSGDmethod is favorable. Further

experiments are presented that study how the different

components of the CSGD contribute to the overall

performance, and how reducing the amount of training

data affects the quality of the fitted regression model.

Section 6 provides a summary and points out challenges

with parametric postprocessing approaches that require

further investigation.

2. Data

The postprocessing method developed here is applied

to 12-hourly accumulated precipitation forecasts during

the period from January 2002 toDecember 2013 for lead

times up to16 days. All the forecast data were obtained

from the second-generation GEFS reforecast dataset;

the same data were used in a recent paper by Hamill

et al. (2015), which discusses variants of the analog

method for statistical postprocessing of ensemble

precipitation forecasts. For precipitation, individual
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forecasts by the 11-member GEFS reforecast ensemble

were retrieved, and forecast data were extracted on

GEFS’s native Gaussian grid at ;1/28 resolution in an

area surrounding the contiguous United States. Total-

column ensemble-mean precipitable water is used as an

additional predictor in our regression model, and the

corresponding forecasts were interpolated to the same

grid before further processing. Again as in Hamill et al.

(2015), postprocessing and verification is performed

against precipitation analyses from the climatology-

calibrated precipitation analysis (CCPA) dataset of

Hou et al. (2014), which were obtained on a ;1/88 grid
inside the contiguous United States. The downscaling

from the ;1/28 to the ;1/88 resolution will implicitly be

part of the postprocessing procedure.

3. The censored, shifted gamma distribution

To set up a parametric postprocessing method, a

suitable class of probability distributions must be iden-

tified. As precipitation occurrence/nonoccurrence and

amount aremodeled jointly, a convenient way to do so is

using a continuous distribution that permits negative

values, and left-censoring it at zero (i.e., replacing all

negative values by zero). The censoring turns the

probability for negative values of the uncensored dis-

tribution into a probability of observing a value equal to

zero, thus ensuring requirement 1 described in section 1.

Exploratory data analysis reveals another challenging

requirement for conditional distributions of pre-

cipitation accumulations: when the predictor variable

(e.g., the ensemble-mean precipitation forecast) is small,

then a strongly right-skewed distribution is called for,

but the required skewness becomes smaller and smaller

as the predictor variable’s magnitude increases. To some

extent, this behavior can be addressed by using gamma

distributions, which are characterized by a shape pa-

rameter k and a scale parameter u. Those two

parameters are related to the mean m and the standard

deviation s of the gamma distribution via

k5
m2

s2
, u5

s2

m
(1)

(Wilks 2011, section 4.4.3). Since the predictive standard

deviation increases more slowly than the predictive

mean as the predictor variables increase, the shape pa-

rameter k increases, and as k increases, skewness

decreases.

A disadvantage of the gamma distribution is that its

value range is nonnegative. To make the above censor-

ing idea feasible, we therefore introduce an additional

parameter d. 0. This shifts the cumulative distribution

function (CDF) of the gamma distribution somewhat to

the left. That is, if Fk denotes the CDF of a gamma

distribution with unit scale and shape parameter k, then

the CDF ~Fk,u,d of our CSGD model is defined by

~F
k,u,d

(y)5

8><
>:

F
k

�
y2 d

u

�
for y$ 0

0 for y, 0

. (2)

Using the relations in (1), this distribution can also be

parameterized by m, s, and d: m reflects the expected

magnitude of precipitation, s parameterizes prediction

uncertainty, and d reduces the magnitude of pre-

cipitation somewhat and controls the probability of zero

precipitation. An illustration of the CSGD is given in

Fig. 1. Note that s affects both the continuous part of the

distribution and the point mass at zero, which we feel is

consistent with its interpretation as an uncertainty pa-

rameter: if the expected amount of precipitation is

1mm, high forecast uncertainty implies that there is

still a certain chance of observing much more pre-

cipitation, but also a significant chance of observing no

precipitation at all. Increasing s while keeping m and

FIG. 1. Examples of censored, shifted gamma distributions. The fractions of the probability density function that fall

below zero (shown in the gray shading) translate into a positive probability of being exactly zero.
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d fixed shifts more mass below the censoring threshold,

and thus accounts for both implications of increased

uncertainty. A two-stage approach that models pre-

cipitation occurrence and amount separately offers

more flexibility, but does not have a single parameter

that can be interpreted as uncertainty in this way.

4. Postprocessing method

Having selected a family of probability distributions,

we propose a procedure to link the three parameters of

this distribution to the ensemble forecasts. This is done

in three steps. First, quantile mapping is performed to

adjust the ensemble precipitation forecasts such as to

match the observation climatology. The adjusted fore-

casts are then reduced to two statistics that measure

mean and spread of predicted precipitation accumula-

tions. A further statistic is calculated that measures the

mean precipitable water. In the second step, we fit a

CSGDmodel as in (2) to the observed daily climatology

of 12-h precipitation accumulations at each grid point

(separately for each month). This CSGD model is the

basis for a heteroscedastic regressionmodel that is set up

in the third step, and links the ensemble statistics from

step 1 to the CSGD parameters, thus defining a pre-

dictive distribution for the observed precipitation ac-

cumulations, given the ensemble forecasts. We now

consider each step in more detail.

a. Quantile mapping and ensemble statistics

As a first step in our postprocessing scheme, we attempt

to correct systematic errors in ensemble forecast clima-

tology. For example, the underlying numerical weather

prediction may produce too many days with light pre-

cipitation and underforecast heavy precipitation events.

Alternatively, these errors can arise due to coarser spatial

resolution of the forecast grid compared to the grid on

which analyzed precipitation is available. This first step

can therefore also be viewed as a preliminary downscaling

procedure.

Let s be a location associated with some analysis grid

point. Prediction errors of the ensemble forecasts may re-

sult from inaccurately predicted magnitudes of a pre-

cipitation event as described above, butmay also be caused

by displacement errors. For example, a front or thunder-

storm may have been predicted by the numerical weather

prediction (NWP) model, but its position might be shifted

away somewhat from its true position. The ensemble size of

operational ensemble forecast systems is usually too small

to represent this position uncertainty, and we, therefore,

follow Scheuerer (2014) and consider ensemble forecasts at

all forecast grid points within a certain neighborhoodN(s)

of s as potential predictors for the analyzed precipitation

amount at s. Forecast fxj of ensemble member j at forecast

grid point x is thus used multiple times to calculate en-

semble and spatial means and spreads for all analysis grid

point neighborhoods N(s1), N(s2), . . . containing x. Each

time, the forecasts withinN(s) are adjusted such that their

climatology matches the respective observation climatol-

ogy as illustrated in Fig. 2. This is achieved via quantile

mapping: for each forecast fxj we determine to which

quantile qf ,x(p), p 2 [0, 1] of the forecast climatology it

corresponds, and thenmap it to the corresponding quantile

qo,s(p) of the observation climatology. The quantiles are

estimated from the training sample; for the GEFS ensem-

ble considered here, all members are exchangeable, can

thus be assumed to have the same forecast climatology, and

can be pooled for the purpose of estimating the forecast

quantiles. Estimating higher quantiles still comes with

substantial sampling variability, and to make our quantile

FIG. 2. (left) Illustration of the neighborhood weighting scheme and the climatology adjustment for an analysis grid point (‘‘1’’) near

Sacramento, CA, and r 5 28. Forecast grid points are denoted by ‘‘d,’’ and their area is proportional to the weight wsx. (middle),(right)

Illustration of, for two of these forecast grid points, how the corresponding forecasts are adjusted by quantile mapping.
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mapping procedure more robust, we, therefore, resort to a

linear approximation of themapping function for quantiles

above the 90%quantile (details of this procedure are given

in appendix A in the online supplemental material).

To use the adjusted ensemble forecasts within a re-

gression framework, they are next condensed into sta-

tistics that summarize the most important information.

As discussed above, we propose that all forecast grid

points in N(s)—which we take as a neighborhood

around s with radius r—should be considered in de-

termining these statistics, but we still expect forecasts at

grid points closer to s to be more informative about the

precipitation at s. Following Scheuerer (2014), we,

therefore, weigh the forecast grid points according to

their distance to s and let

w
sx
;max

�
12

�
dist(x, s)

r

�2
, 0

�

with a constant of proportionality chosen such that

the weights sum up to one (see left panel of Fig. 2 for

an illustration of this weighting scheme). Assuming

that we have an m-member ensemble with adjusted

precipitation forecasts ~f x1, . . . ,
~f xm and forecasts

xx1, . . . , xxm of precipitable water, we consider the fol-

lowing ensemble statistics:

POP
f ,s
:5

1

m
�
m

j51
�

x2N(s)

w
sx
1f~f xj.0g , (3)

f
s
:5

1

m
�
m

j51
�

x2N(s)

w
sx
~f
xj
, (4)

x
s
:5

1

m
�
m

k51
�

x2N(s)

w
sx
x
xk
, and (5)

MD
f ,s
:5

1

m2 �
m

j,j051
�

x,x02N(s)

w
sx
w

sx0 j~f xj 2 ~f
x0j0 j . (6)

The first statistic describes the probability of pre-

cipitation derived from the (augmented and weighted)

ensemble. The second and third are the weighted

means of predicted adjusted precipitation accumula-

tions and precipitable water over all ensemble mem-

bers and all forecast grid points in N(s). The fourth

statistic measures the dispersion of the predicted pre-

cipitation accumulations both between ensemble

members and between grid points in N(s). Unlike

Scheuerer (2014), we do not use separate measures of

dispersion for those two sources of variability in order

to keep the number of parameters in our hetero-

scedastic regression model (defined below) as few as

possible. We finally note that the adjustment of fore-

casts in N(s) to the observation climatology at s via

quantile mapping achieves two goals: first, it produces

an implicit downscaling to the precipitation at elements

on a finer grid; and second, it results in a homogeni-

zation of the forecasts within N(s), so that the aggre-

gation of forecasts within a large neighborhood to

ensemble statistics is reasonable also in, for exam-

ple, mountainous regions with substantially varying

climatologies.

b. Unconditional precipitation accumulations

Although our main interest is in modeling the condi-

tional distribution of observed precipitation accumula-

tions given the ensemble forecasts, we first consider

their unconditional (i.e., climatological) distributions.

Studying those is much easier and yet quite instructive,

as the conditional distributions should converge toward

the unconditional distribution as forecast skill decreases.

Moreover, they will allow us to parameterize the con-

ditional distributions such as to make them more com-

parable across grid points with different climatologies.

To fit the parametric CDF ~Fm,s,d to the empirical CDF

F̂n of the observations y1, . . . , yn at this grid point, we

minimize the integrated quadratic distance

d
IQ
( ~F

m,s,d
, F̂)5

ð‘
0

[ ~F
m,s,d

(t)2 F̂
n
(t)]2 dt (7)

inm, s, and d. According to Thorarinsdottir et al. (2013),

this is equivalent to minimizing the mean continuous

ranked probability score (CRPS):

1

n
�
n

i51

crps( ~F
m,s,d

, y
i
) , (8)

where

crps(F, y)5

ð‘
2‘

[F(t)2H(t2 y)]2 dt , (9)

andH(�) is the Heaviside step function (i.e., it is equal to

1 if t$ 0 and zero otherwise). After reparameterizing,

the integral on the right-hand side can be expressed in

closed form as

crps( ~F
k,u,d

, y)5 u~y[2F
k
(~y)2 1]2 u~cF

k
(~c)2 1 uk[11 2F

k
(~c)F

k11
(~c)2F

k
(~c)2

2 2F
k11

(~y)]2
uk

p
B

�
1

2
, k1

1

2

�
[12F

2k
(2~c)] , (10)
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where ~c :52d/u, ~y :5 [(y2 d)/u], and B(�, �) is the beta

function (a derivation of this formula is given in ap-

pendix B in the online supplemental material). The

availability of a closed form expression makes model

fitting through numerical CRPS minimization compu-

tationally efficient. When performing this minimization,

the constraint d$2m is imposed in addition to the

constraints m, s. 0 and d# 0 that are required for the

distributionmodel to bewell defined. The reason for this

will become clearer later in this section, when we set up

the regression model for the conditional distribution of

the observation given the forecasts.

For solving the constrained optimization problems

numerically, we use the FORTRAN 77 implementa-

tion of the Linearly Constrained Optimization Algo-

rithm (LINCOA) by M. J. D. Powell [details of this

algorithm have not been published yet, but the usual

way of choosing a new vector of variables is described

in Powell (2014)]. A starting value for the optimiza-

tion is obtained through the following rationale: if we

had s5m, the underlying gamma distribution would

have a shape parameter k5 1, which corresponds to

the special case of an exponential distribution. For this

distribution, the mean over all nonzero precipitation

amounts is an estimate of m (and s), for any proba-

bility of precipitation ppop, and d can subsequently be

estimated as d5m log(ppop). For the 12-h accumula-

tions considered here, the best-fitting k is typically

smaller than 1, with m being overestimated by the as-

sumption of an exponential distribution. Moreover,

the first-guess estimates proposed above might violate

the constraint d$2m. We, therefore, improve our first

guess by fixing s, gradually decreasing m, and re-

calculating d52(m/k)F21
k (12ppop) until d.2m/2.

The resulting values of m, s, and d are then used as

starting values for the numerical minimization of (8).

If ppop , 0:02, we expect the number of days with

nonzero precipitation to be too small to warrant stable

estimates, and we, therefore, take the starting values

as the final estimates. For extremely dry grid points

with ppop , 0:005, even the simple preliminary esti-

mates might be unreliable, and we use ad hoc values

m5 0:0005,s5 0:0182, and d520:000 49 to set up a

parametric distribution model for the analyzed cli-

matology. This choice complies with the constraint

d$2m and corresponds to a CSGD distribution

with a probability of precipitation of slightly less than

0.005.

Figures 3 and 4 show examples of fitted CSGDs at a

very wet location (West Palm Beach, Florida) and a

very dry location (Phoenix, Arizona), respectively.

The empirical and the fitted, parametric CDFs

are virtually indistinguishable. The approximate

character of the parametric distribution becomes

more obvious when we plot its quantiles against the

sorted observations. In those Q–Q plots we observe

quite strong departures from the diagonal, especially

in the upper tail. However, this is also where we expect

significant sampling variability. To understand to what

extent the departures might just be random, we add

pointwise 95% Monte Carlo intervals by simulating

10 000 samples of the same size as the original obser-

vations according to the fitted distribution model,

sorting them, and reporting the 2.5% and 97.5%

quantile of the first elements, second elements, and so

forth. The black dots in the Q–Q plots in Figs. 3 and 4

(and in all other examples that we studied) are mostly

inside the 95% Monte Carlo intervals, suggesting that

the distribution family proposed here is adequate for

modeling unconditional distributions of precipitation

accumulations.

c. Regression equations

The final step is now to set up and fit a regression

model for the conditional distribution of observed

precipitation accumulations given the forecasts. To

this end, the ensemble statistics for location s defined

above must be linked to the parameters ms, ss, and ds
of our CSGDmodel in (1) and (2). Denote bymcl,s, scl,s,

and dcl,s the parameters of the climatological CSGD at

s, and by f cl,s and xcl,s the climatological means of f s and

xs, respectively, calculated as averages of these quan-

tities over the current training sample. We fix ds 5 dcl,s
and model the conditional CSGDs as deviations from

the climatological CSGD. The most basic regression

model would let ms increase linearly with f s and ac-

count for the fact that uncertainty about precipitation

amounts increases as their amplitude increases by

letting ss increase proportional to the square root of

ms:

m
s
5m

cl,s

 
a
2,s
1a

4,s

f
s

f
cl,s

!
(11)

s
s
5a

6,s
s
cl,s

ffiffiffiffiffiffiffiffi
m
s

m
cl,s

s
. (12)

This model has only three regression coefficients and is

thus comparable in terms of model complexity with

extended logistic regression (Wilks 2009). Equation (11)

can easily be extended to include additional predictors

for ms:

m
s
5m

cl,s

 
a
2,s
1a

3,s
POP

f ,s
1a

4,s

f
s

f
cl,s

1a
5,s

x
s

x
cl,s

!
. (13)
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A predictor like POPf ,s can provide additional in-

formation about whether precipitation occurs or not

(Sloughter et al. 2007; Bentzien and Friederichs 2012;

Scheuerer 2014) while the consideration of pre-

cipitable water as an additional predictor can yield

some improvement during the warm season where

the forecast precipitation amount is more sensitive to

the vagaries of the convective parameterization and

its triggering scheme (Hamill and Whitaker 2006).

Another generalization concerns the use of a suitable

measure of ensemble spread as a predictor of the

flow-dependent forecast uncertainty. Messner and

Mayr (2014) have demonstrated that using such in-

formation can improve probabilistic wind speed pre-

dictions. For precipitation, Scheuerer (2014) has

argued that location uncertainty should also be taken

into account, and the statistic MDf ,s defined above

summarizes the information in the ensemble forecasts

about both of these sources of uncertainty. A final

generalization relaxes the linearity assumption in

(13) and the assumption in (12) that ss increases

proportional to the square root of ms, and leads to

the regression equations:

m
s
5
m

cl,s

a
1,s

log1p

"
expm1(a

1,s
)

 
a
2,s
1a

3,s
POP

f ,s

1a
4,s

f
s

f
cl,s

1a
5,s

x
s

x
cl,s

!#
and (14)

s
s
5a

6,s
s
cl,s

 
m

s

m
cl,s

!a7,s

1a
8,s
MD

f ,s
, (15)

where log1p(x)5 log(11 x) and expm1(x)5 exp(x)2 1.

When a1,s is close to zero, expm1(a1,s)’a1,s and

log1p(a1,sz)’a1,sz, and thus (14) reduces to the linear

regression in (13). Some exploratory analysis (see also

Fig. 6), however, suggests that a linear increase of ms

with f s is not always appropriate. In situations with re-

duced predictability (e.g., longer lead times, warm sea-

son), ensemble forecasts of high precipitation amounts

are particularly unreliable and should be decreased

proportionately more compared to forecasts of inter-

mediate levels. This is the rationale behind the loga-

rithm in (14). Increasing the parameter a1,s reduces

the growth of ms with increasing predictors and thus

FIG. 3. (top) Empirical and fitted CDFs and (bottom) Q–Q plots of 12-hourly accumulated precipitation analyses in West Palm

Beach, FL. The black dots in the bottom panels are the sorted observations, plotted against the corresponding theoretical

quantiles from the fitted CSGD model. Ideally, they would lie on the diagonal (solid red line); due to sampling variability,

however, any black dot lying within the pointwise 95% Monte Carlo intervals (solid blue lines) can still be considered consistent

with the fitted model.
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accounts for the phenomenon just described. Equation

(15) accounts for the heteroscedasticity in the un-

certainty about precipitation accumulations in two dif-

ferent ways. The first term increases ss proportionally

to a power of ms, while the second term is proportional

to MDf ,s and thus accounts for flow-dependent un-

certainty. Other parametric postprocessing methods for

precipitation (e.g., ExLR, BMA) deal with hetero-

scedasticity by applying power transformations to both

forecasts and observations with the goal of making their

relation more homoscedastic. This might be preferable

when only small training datasets are available be-

cause it results in a potentially less complex model for

ss. It entails, however, the disadvantage of strongly

distorting the scale of these variables. Consider, for ex-

ample, the two hypothetical five-member ensembles

(0:5, 1, 1:5, 2, 10) and (0, 2:5, 3:5, 4, 5), which have the

samemean, butmean absolute differences of 4.0 and 2.3,

respectively. The higher dispersion of the first ensemble

results from one member predicting a substantially

higher precipitation amount than the other members,

which indicates a certain chance for heavier pre-

cipitation. If the mean absolute differences were calcu-

lated from cube root transformed forecasts, values of

0.595 and 0.730 would be obtained, suggesting more

uncertainty in the second ensemble. This does not ade-

quately reflect the situation in the original ensembles,

and could thus reduce the value of flow-dependent un-

certainty information in the ensemble. Modeling het-

eroscedasticity explicitly as in (15) avoids the need for

data transformations but entails a more complex re-

gression model. Including mcl,s and scl,s in the two re-

gression equations does not change the actual model but

is useful because it normalizes the regression parameters

a1,s, . . . , a8,s and makes them more comparable across

grid points with different climatologies.

Figure 5 illustrates the evolution of the predictive

CSGD density with increasing mean precipitation f s in a

simplified setting where a3,s, a4,s, and a8,s have been set

to zero. It shows how the uncertainty increases with in-

creasing f s; at the same time the skewness of the un-

derlying gamma distribution becomes smaller and

smaller. Choosing a1,s 5 0:05 results in a moderate de-

parture from a linear relation between f s and ms.

Is the CSGD adequate for modeling conditional dis-

tributions of precipitation accumulations, and are the

above regression equations for its parameters m and

s adequate for describing the evolution of these pa-

rameters with increasing ensemble mean? To answer

this we compare quantiles derived from predictive

CSGDs with empirical conditional quantiles obtained

without any parametric assumption. For this purpose,

however, even the 12 years’ worth of reforecast data are

not enough if only data from a single grid point are

FIG. 4. As in Fig. 3, but for Phoenix, AZ.
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considered. We focus on the analysis grid point corre-

sponding to the city of Atlanta, Georgia, and we in-

crease the corresponding dataset by selecting 200

additional analysis grid points within a radius of about

700 km around Atlanta that have a similar climatology

(measured by comparing the empirical CDFs of ana-

lyzed precipitation amounts at the threshold values 0.5,

1.5, . . . , 99.5mm) and are at least 40 km apart from each

other. For each season, we then have about 91 3 12 3
201 pairs of observations and quantile adjusted fore-

casts. We study again the simplified regression model

with a3,s 5a4,s 5a8,s 5 0 (i.e., with f s as the only pre-

dictor). The conditional quantiles of the observation

given f s 5 x can then be approximated by considering all

forecast–observation pairs for which f s falls within a

certain window (x2 «, x1 «) around the precipitation

amount x, and computing the quantiles of the corre-

sponding observations. We let « increase with x to ac-

count for the fact that the number of pairs with f s ’ x

decreases rapidly as x increases. For x5 5mm and x5
15mm our choice of « is illustrated in Fig. 6. The crosses

in each plot correspond to the empirical, conditional

deciles (i.e., quantiles for the probabilities 0:1, . . . , 0:9)

for each season and forecast lead times from 112

to 124h and from 1108 to 1120 h. The solid lines are

the quantiles obtained with our parametric regression

model, fitted to the same training data. As for the un-

conditional CSGDs, the regression parameters are fitted

by CRPS minimization using the LINCOA algorithm.

Clearly, not every model-based quantile approximates

the respective empirical quantile perfectly, and very ir-

regular behavior cannot be captured. Yet one can see

that the nonlinear relation between f s and ms, which

takes different forms depending on season and lead

time, is accounted for by the logarithm in (14), allowing

the red median curves to bend downward from a linear

curve as f s increases. Moreover, the increase of pre-

dictive uncertainty (distances between the blue decile

curves) with increasing f s is captured quite well by the

model for ss given in (15). It is worth noting that our

method for getting empirical estimates of conditional

quantiles is quite similar to what is being done by analog

approaches. Those techniques are much more flexible

and avoid the approximation errors entailed by para-

metric methods. On the other hand, several of the plots

in Fig. 6 also suggest that the empirical quantiles for

large values of f s are subject to quite substantial sam-

pling error, even in the situation considered here where

we choose the ‘‘analogs’’ from a training dataset of size

91 3 12 3 201.

Finally, consider how the regressionmodel in (14) and

(15) for the predictive CSGDs approaches the parame-

ters for the climatological CSGD in the limit where the

raw ensemble forecasts have no skill. As the lead time

increases, one can expect that the four predictors

POPf ,s, f s, xs, and MDf ,s become less and less in-

formative about the true weather, and so the corre-

sponding regression parameters a3,s, a4,s, a5,s, and a8,s

FIG. 5. Example of predictive CSGD densities, showing the evolution of the CSGD parameters m and s from (1) and

(2) as a function of the ensemble-mean statistic f s.
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tend to zero. If at the same time a2,s and a6,s tend to one,

then ms and ss tend to the climatological CSGD pa-

rameters mcl,s and scl,s, whatever the values of a1,s and

a7,s, and so the climatological CSGD results as a limiting

case. Including mcl,s and scl,s in the regression equations

(14) and (15) can therefore be seen as a kind of nor-

malization, which helps reduce the dependence of the

regression parameters a1,s, . . . , a8,s on the climatology

at location s and thus renders them more comparable

across different grid points.

Modeling the conditional distributions as deviations

from the climatological distributions requires some

constraints of the latter. We found that this deviation

concept does not work well at very dry locations if the

shift parameter dcl,s of the climatological CSGD is large

compared to mcl,s. In this case, positive precipitation

accumulations correspond to the tail end of the un-

derlying gamma distribution, and deforming this distri-

bution into a CSGDwith a moderate to high probability

of precipitation is rather unnatural. By introducing the

constraint dcl,s $2mcl,s on the climatology parameters in

section 4b, we enforce a very small shape parameter k.

The mass of the underlying gamma distribution is then

concentrated near zero, and a very small shift is suffi-

cient to obtain a high probability of values less than zero.

Fitting a climatological CDF to the observation data

under this constraint can result in a slightly suboptimal

fit to the empirical, climatological CDF near zero, but

this degradation is offset by the fact that the fitted

CSGD permits a natural deformation into the predictive

CSGD for any value of the predictors.

5. Validation of the CSGD method

We apply our CSGD regression method to the full

dataset described in section 2. Now, every grid point of

the CCPA grid (within the CONUS) is processed sep-

arately. Forecasts are cross validated; for example, 2002

forecasts are trained using 2003–13 data. To account for

seasonal differences, a separate set of (both climato-

logical and regression) parameters is fitted for each

month; training data are composed of all forecasts and

observations from 145 days around the 15th of the

month under consideration and all years except the one

FIG. 6. Conditional deciles (median is highlighted in red) obtained with the augmented Atlanta dataset. Empirical deciles are depicted

as crosses. For each conditioning value 1, 2, . . . , 25mm they are obtained as empirical deciles of the observations corresponding to

ensemble-mean statistics within a certain bin (with 5 and 15mm depicted as vertical dashed lines) around this value. Deciles derived from

the CSGD regression model are depicted as solid lines.
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for which forecasts are sought. This results in a training

sample size of 91 3 11 at each grid point. Compared to

the amount of training data that are typically used for

weather variables like wind speed or temperature, this

training sample size seems fairly large. At very dry lo-

cations, however, the majority of both forecasts and

observations are zero, and thus carry only limited in-

formation that can be leveraged for model fitting. For

the parameters of the unconditional CSGDs we already

described our special treatment of these dry cases in

section 4b. For the regression parameters, we increase

the training dataset of any grid point where the clima-

tological probability of precipitation is less than 0.05 by

considering also the data at adjacent grid points in the

east–west and north–south direction. For grid points

with a climatological probability of precipitation of less

than 0.02, we additionally add the training data from

diagonal neighbors. Parameters are estimated via CRPS

minimization, subject to the following bounds:

0:001#a
1,s
, a

2,s
# 1, 0#a

3,s
, a

4,s
,a

5,s
# 1:5,

0:1#a
6,s
, a

7,s
# 1, and 0#a

8,s
# 1:5,

which are partly ad hoc and partly based on the discussion

at the end of the previous section. In our experiments,

CRPS minimization gave slightly better results than

classical maximum likelihood estimation, which is non-

robust and tends to favor overdispersive predictive

CSGDs. The same conclusion was reached by Gneiting

et al. (2005) in the context of temperature post-

postprocessing. Initially, we fix the radius of the neigh-

borhood within which forecasts are considered as

predictors (see section 4a) to r 5 28 (’200km).

a. Overall performance and model complexity

First, we take a look at the overall predictive perfor-

mance of our CSGD method, measured by the continu-

ous ranked probability skill score (CRPSS), which

quantifies the improvement of theCRPSof the predictive

CSGDs over climatological forecasts. We also study in

how far the different predictors and the nonlinear and

heteroscedastic components of our model contribute to

this overall performance. As a benchmark we use the

basic model defined by (11) and (12), which has only

three parameters and is comparable in terms of model

complexity with the basic ExLR model by Wilks (2009).

Direct comparisons of the parametric postprocessing

approaches mentioned in section 1 (ExLR, BMA,

EMOS) suggest that their predictive performance is quite

similar (Schmeits and Kok 2010; Scheuerer 2014), so how

much extra skill can be gained by adding additional

predictors or permitting certain forms of nonlinearity?

We increase model complexity step by step as follows:

1) Use the nonlinear model (14) for ms but still use f s as

the only predictor.

2) Relax the assumption a7,s 5 0:5 in (12) about the rate

of increase of ss with increasing ms.

3) Use the full model (15) for ss by adding MDf ,s as a

predictor for forecast uncertainty.

4) Add xs (precipitable water) as a predictor for ms.

5) Add POPf ,s as a predictor for ms.

Figure 7 depicts the overall CRPSS (for the full

model) for different lead times and the CRPSS increase

that results from adding step by step the extra com-

ponents described above. The first thing to note is the

pronounced seasonal cycle of the CRPSS. Summertime

convection is more difficult to forecast than synoptic-

scale winter precipitation, and so forecast skill during

the cool season is substantially higher than during the

warm season. This pattern is inherited from the raw

ensemble predictions, the corresponding results can be

found in Hamill et al. (2015). The increase in skill due

to the different refinements of the basic model is rather

moderate for each individual extension, but sums up

to a cumulative increase of about 0.01–0.015. The big-

gest benefit results from allowing a nonlinear increase

of ms with f s, especially for longer lead times (see right

panel of Fig. 7). The predictor POPf ,s yields a rather

constant improvement in skill over all months of the

year, while the predictor xs (precipitable water) be-

comes especially useful in the warm season but adds no

information to the ensemble precipitation forecasts

during the more predictable cool season. The converse

is true for the MDf ,s predictor that measures the spread

of the forecasts between different ensemble members

and forecast grid points within N(s): it provides useful

information about flow-dependent forecast uncertainty

during the cool season, but does not improve (or even

degrades, for longer lead times) probabilistic forecast

skill during the warm season. The degradation is

presumably a result of overfitting, to which the MDf ,s

predictor is particularly prone, and that becomes a

more serious concern as the signal-to-noise ratio in the

training dataset decreases. Finally, we note that esti-

mating the rate of increase of ss with increasing ms

rather than fixing a7,s 5 0:5 adds some flexibility, but

the resulting benefit on predictive performance is quite

marginal.

Figure 8 depicts maps of CRPSS values of the CSGD

predictions to provide an impression about regional

differences. Forecast skill is largest along the east and

especially the west coast of the CONUS, which we be-

lieve is due to the relatively high predictability of oro-

graphically induced, synoptically forced precipitation.

The general spatial pattern of forecast skill resembles
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that of the raw ensemble (see Hamill et al. 2015) while

the skill is significantly better.

b. CSGD versus analog method: Brier skill scores
and reliability

The CRPS studied so far is a useful and common

measure of the overall skill, but it does not allow any

conclusion about how skillful the CSGD forecasts are for

predicting light, intermediate, and heavy precipitation

events. To answer this question, we study Brier skill

scores [Wilks 2011, see his Eqs. (7.34) and (7.35)] for the

three thresholds of 1, 10, and 25mm (12h)21. We further

compare the predictive performance of the CSGD ap-

proach to a recently proposed variant of the rank analog

approach by Hamill and Whitaker (2006), where

supplemental locations are used to augment the training

dataset at each analysis grid point. This adjustment to the

rank analog procedure was shown to substantially im-

prove probabilistic forecasts for heavy precipitation

events (Hamill et al. 2015). Can the same or even more

improvement be achieved by a parametric postprocessing

scheme? Figure 9 depicts the monthly Brier skill scores

(BSSs) for both methods, the three different thresholds,

and forecast lead times up to 16 days. Even for

the .1mm (12h)21 event, the CSGD method can still

improve upon the analog method, despite the fact that

this is a rather common event at most grid points, and we

should expect that sufficiently close analogs can usually

be found. The fact that the CSGD method can compete

with the analog approach in this situation suggests that

FIG. 8. Map of CRPSS values, aggregated over all months and all cross-validated years: (left) for 112- to 124-h lead time and (right)

for 1108- to 1120-h lead time.

FIG. 7. (left) CRP skill scores for different lead times, separately for each month, but aggregated over all analysis grid points within the

CONUS. Increases of CRPSSs due to increased model complexity are shown for (middle)112- to 124-h lead time and (right)1108- to

1120-h lead time.
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our parametric approximation does not degrade pre-

dictive performance even when analog methods can be

expected to perform very well. Comparing results for

higher thresholds, we find that the probabilistic CSGD

forecasts are again able to improve upon the forecasts by

the analog method. The event .25mm (12h)21 is rela-

tively rare, making it difficult to find a sufficient number

of suitable analogs, even if supplemental locations are

added to increase the training datasets. Our parametric

method, on the contrary, can extrapolate relations found

for more common situations and thus yield superior

predictions of rare events.

To provide some understanding about the causes of

the better performance of our parametric method

compared to the nonparametric analog approach, we

consider reliability diagrams for the same events as

above [thresholds 1, 10, and 25mm (12h)21] and lead

times from112 to124 h and from1108 to1120h. The

plots in Figs. 10 and 11 suggest that both methods yield

reliable probabilistic forecasts at short lead times. At

longer lead times, they are still sufficiently accurate,

though somewhat less reliable. By comparing the inset

frequency histograms, one can see that the performance

gain of our CSGD method is mainly due to increased

resolution; it issues high probabilities for observing

heavy precipitation more frequently without degrading

the reliability compared to the analog approach, which

does not rely on parametric assumptions.

We illustrate the last point by considering a heavy

precipitation event that took place over Washington

FIG. 9. Brier skill scores for different lead times and different event thresholds, separately for eachmonth, but aggregated over all analysis

grid points within the CONUS: (top) Results for the rank-analog method and (bottom) results for the CSGD regression approach.
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State between 1200 UTC 6 November and 0000 UTC

7 November 2006. Figure 12 shows the analyzed pre-

cipitation accumulations for that period, as well as112-

to 124-h lead predicted probabilities for exceeding

25mm (12 h)21 of precipitation by the raw ensemble, the

analog approach, and the CSGD regression method.

The raw ensemble forecasts for that day were quite ac-

curate, but since this is not always the case, one can

expect that calibrated probabilistic forecasts modulate

the high forecast probabilities. The analog approach

modulates them more strongly, issuing rather moderate

probabilities. On the other hand, the CSGD method

largely retains the strong signal from the raw ensemble,

and hence provides decision-makers with a more un-

equivocal expectation of heavy precipitation.

c. Performance with a greatly reduced training dataset

The results by Hamill et al. (2015) underscore the

importance of a sufficiently large training dataset for

statistical postprocessing, especially when the interest

is in heavy precipitation events. What if a large

reforecast dataset is not available? Can the CSGD

approach retain its strong performance, or will it lose a

large amount of skill as a result of overfitted regression

parameters? Can possible overfitting be avoided by

supplementing the training dataset at each grid point

with training data from other grid points? To answer

these questions we repeat the entire procedure

(quantile mapping, calculating ensemble statistics, fit-

ting the regression model) described above, this time

using, for each of the 12 verification years, only forecast

data from the preceding year or from the preceding

three years (defining 2013 to be the year that precedes

2002) for training. We are thus left with only 91 and 273

training days, respectively, for quantile mapping and

model fitting. Using just a single year of training data

mimics the situation where no reforecasts are pro-

duced, but one year of training data are available

from a preoperational test phase after a major update

of the NWP system. Such an update would only have a

limited or no effect on the verification/calibration data,

and we, therefore, use the same CCPA datasets as

FIG. 10. Reliability diagrams for112- to124-h lead time and different event thresholds, calculated with forecast–observation pairs of

all months, all cross-validated years, and all analysis grid points within the CONUS. (top) Results for the rank-analog method and

(bottom) results for the CSGD regression approach. The inset histograms depict the frequency with which each category was predicted.
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before (11 training years for each verification year) for

calculating the CCPA quantiles (section 4a) and fitting

the unconditional CSGD model (section 4b).

Since fixing a7,s 5 0:5 hardly affected the predictive

performance with the large training dataset used above,

and since the uncertainty parameter a8,s is particularly

prone to overfitting, we fit reduced CSGD regression

models with a7,s 5 0:5 and a8,s 5 0 in the present setup.

Even the estimation of the remaining six parameters

might be difficult with only 91 or 273 training days (the

majority of which are typically dry days). We, therefore,

consider a further setup where we use again just 1 year/

3 years of training data (forecasts) but supplement the

dataset at each analysis grid point with data from 19

other analysis grid points with similar climatologies and

terrain characteristics, and a certain minimal distance

to each other to make sure that their forecast error

characteristic are largely independent. A detailed de-

scription of the algorithm for selecting the supplemental

locations is given in the paper byHamill et al. (2015; also

see appendix A in the online supplemental material),

where supplemental locations are used quite success-

fully to improve the predictive performance of the

analog method for higher precipitation events. In their

setup, the supplemental data complement the reforecast

data; here, we study how well data from other locations

can substitute reforecast data.

For the calculation of the forecast quantiles as re-

quired for the quantile mapping step, there is no

straightforward way to pool data across different grid

locations. In this context we must hope that there is

sufficient independent information in the ensemble

(recall that all ensemble member forecasts are pooled

for the purpose of calculating the forecast quantiles)

to warrant an adequate estimation of the forecast

climatology.

Figure 13 depicts the decrease of the Brier skill scores

obtained with the setups described above compared to

the full model fitted with 11 years of training data. The

effects of reducing the training sample size are dramatic,

especially for the prediction of the 25mm (12 h)21 event.

Brier skill scores for112- to124-h lead time go down by

up to 0.1 when only one year of training data are used.

Inspection of the corresponding reliability diagrams (see

appendix C in the online supplemental material) re-

veals that the reliability of CSGD forecasts suffers

FIG. 11. As in Fig. 10, but for 1108- to 1120-h lead time.
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substantially. As a result of overfitting, the predictive

CSGDs become overconfident (underdispersive), and

this overconfidence particularly affects the higher

thresholds. The use of supplemental locations can

mitigate but not entirely compensate for the lack of

reforecast data; although the training dataset corre-

sponding to the ‘‘one year reforecast plus supplemental

locations’’ setup is almost twice as large as the training

dataset with 11 years of reforecasts (but no supple-

mental data), the resulting CSGD predictions are still

inferior. However, they nearly match at least the per-

formance of the CSGDmodel fitted to a training dataset

consisting of three years of reforecasts but no supple-

mental data. On the one hand, this highlights the ben-

efits that a lengthy reforecast can provide, with its

greater variety of weather events covered. On the other

hand, it shows that the strategy of increasing the training

dataset by considering supplemental locations can sub-

stantially reduce the performance loss due overfitting.

d. Role of the neighborhood size considered for the
ensemble statistics

So far, all results for the CSGDmethod were obtained

with a radius r 5 28 around each analysis grid point,

within which forecasts were used as predictors. This is an

ad hoc choice, and the question suggests itself as to how

much of an impact the choice of the neighborhood size

has on the predictive performance, and what the optimal

radius would be for each lead time. To study this, we use

again the maximal training dataset (11 years of forecasts

and analyses), the full regression model (14) and (15),

and calculate the CRPSS of the predictive CSGDs for

different choices of r. The smallest possible radius r 5
0.58 (the resolution of the forecast grid) serves as a

FIG. 12. (a) Analyzed precipitation between 1200 UTC 6 Nov and 0000 UTC 7 Nov 2006 and corresponding 112- to 124-h lead

probability forecasts for exceeding 25mm (12 h)21 of precipitation by (b) the raw ensemble, (c) the analog method, and (d) the CSGD

regression approach.
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benchmark and corresponds to neighborhoods that only

contain the closest forecast grid points. Extremely large

neighborhoods were not tested due to the increased

computational expense. In Fig. 14 we depict the change

in CRPSS relative to this benchmark value for larger

neighborhood sizes. As might be expected, the optimal

radius changes with lead time: for the longest (days 4.5–

5) lead time considered here, the largest radius r 5 3

yields the best results, while for the shortest (days 0.5–1)

lead time an initial increase in predictive performance is

eventually reversed when r is increased beyond 28. This
case further shows that it is not just lead time, but more

generally predictability that determines the optimal ra-

dius: the more predictable precipitation generating

processes during the cool season favor smaller neigh-

borhood sizes than the less predictable processes during

the warm season. The overall increase of skill resulting

from an adequate choice of r (larger than the minimal

choice of r5 0.58) is similar or even larger in magnitude

than the increase resulting from more sophisticated re-

gression equations as studied in section 5a.

6. Discussion

We have discussed a parametric postprocessing ap-

proach that uses statistics of the raw ensemble forecasts

as predictors for the parameters of a censored, shifted

Gamma distribution (CSGD). Exploratory analysis (see

Figs. 3, 4, and 6) showed that CSGDs can approximate

both climatological distributions of observed pre-

cipitation and distributions conditional on the ensem-

ble forecasts reasonably well. Ensemble mean and

FIG. 13. Decrease of the Brier skill scores (aggregated over all analysis grid points within the CONUS) due to a reduction of the training

sample to 1 or 3 years of training data. In both cases we also give results for CSGDdistributions fitted with additional training data from 19

supplemental locations.

4594 MONTHLY WEATHER REV IEW VOLUME 143



dispersion predictors were estimated from the ensemble

at the observation location and in a surrounding area.

Ensemble mean precipitable water was used as a further

predictor. These statistics were used to drive a hetero-

scedastic regression model, which was demonstrated to

be capable of modeling the relation between ensemble

forecasts and parameters of the predictive CSGDs.

Verification results showed that the CSGD regression

approach yields probabilistic forecast that were suffi-

ciently reliable at all lead times and had better resolu-

tion than the forecasts obtained by a state-of-the-art

analog approach. This was especially true for forecasts

of extreme events, which are of particular interest due to

their socioeconomic impact.

The CSGD approach presented here adopted the

Scheuerer (2014) procedure of utilizing forecasts

within a larger neighborhood of the location of interest

as predictors. Accordingly, we also studied the connec-

tion between the optimal neighborhood size and pre-

dictive skill, finding that very large neighborhoods with a

radius of over 300 km performed best with longer lead

times and for predictions during the warm season. For

short lead times and synoptic-scale winter precipitation, a

smaller radius was more appropriate. The improvement

in skill with larger neighborhoods compared to a model

that only used forecasts at the nearest forecast grid points

was similar in magnitude as the improvement due to

more complex and flexible regression equations that

permitted a nonlinear relation between the predictors

and the predictive mean.

Finally, we studied the effect of training sample size

on the predictive performance of the fitted CSGD

model. For the analog method, a large training dataset

is preferred because only then can good analogs always

be found over all cases. The results presented here

suggest that the predictive performance of a para-

metric approach also suffers substantially if the model

is fitted with an insufficiently large dataset. Supple-

mental data from close-by grid points can partly

compensate for a lack of reforecasts, but more efficient

ways to share information between different locations

need to be found to ensure good predictive skill of

forecast of more extreme events even with a limited

amount of reforecasts. These results affirm the positive

value of lengthy training datasets that reforecasts can

provide.
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